1 (i) Solve the equation $2 x^{2}+3 x=0$.
(ii) Find the set of values of k for which the equation $2 x^{2}+3 x-k=0$ has no real roots.

2 Make x the subject of the equation $y=\frac{x+3}{x-2}$.

3 Solve the equation $y^{2}-7 y+12=0$.
Hence solve the equation $x^{4}-7 x^{2}+12=0$.

4 (i) Write $\sqrt{48}+\sqrt{3}$ in the form $a \sqrt{b}$, where a and b are integers and b is as small as possible.
(ii) Simplify $\frac{1}{5+\sqrt{2}}+\frac{1}{5-\sqrt{2}}$.

5 Solve the equation $\frac{4 x+5}{2 x}=-3$.

6 Make a the subject of the equation

$$
\begin{equation*}
2 a+5 c=a f+7 c \tag{3}
\end{equation*}
$$

7 Find the set of values of k for which the equation $2 x^{2}+k x+2=0$ has no real roots.

8 One root of the equation $x^{3}+a x^{2}+7=0$ is $x=-2$. Find the value of a.
$9 \quad n$ is a positive integer. Show that $n^{2}+n$ is always even.

10 Make C the subject of the formula $P=\frac{C}{C+4}$.

11 (i) Find the range of values of k for which the equation $x^{2}+5 x+k=0$ has one or more real roots.
(ii) Solve the equation $4 x^{2}+20 x+25=0$.

